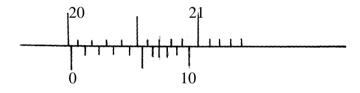
END OF TERM 1 EXAMS

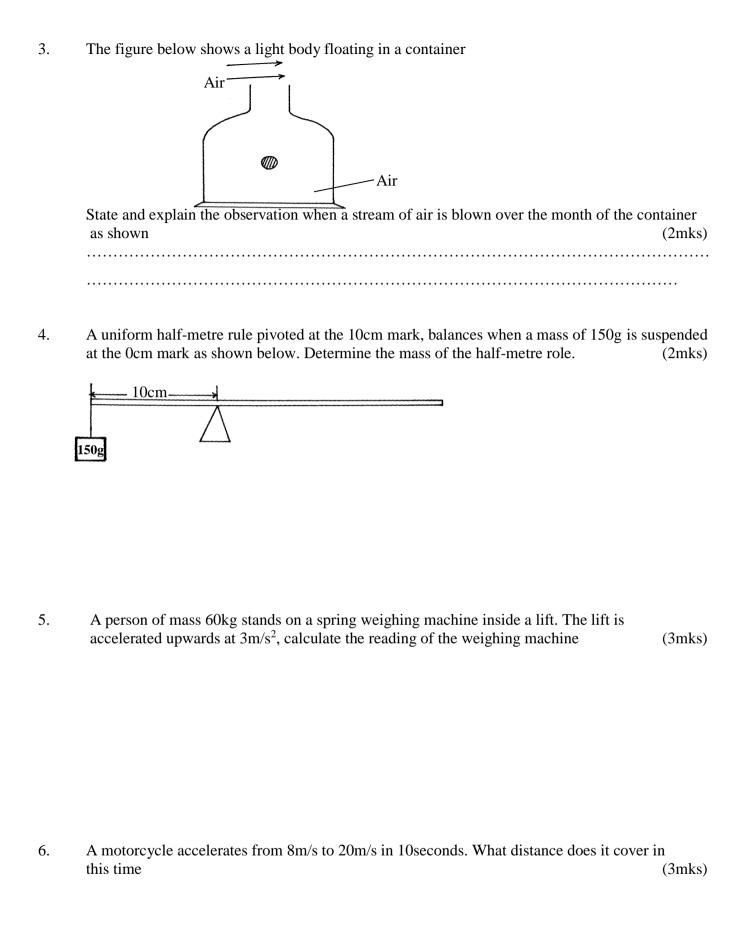
PHYSICS

FORM 3

PAPER 1


TIME: 1 & 1/2 HOURS

NAME	ADM NO:
SIGN	INDEX NO:


SECTION A

Answer all question

1. The figure below shows a diagram of part of a vernier caliper that has zero error of -0.02cm. Determine the length of the object using vernier caliper (2mks)

2. A block measuring 20cm x 10cm x 5cm rests on a flat surface. The block has a weight of 3N. Determine the maximum pressure it exerts on the surface (3mks)

•	Explain why a note in a ship hear the bottom is more dangerous than one hearer the surface (2mks
•	Xcm³ of substance A which has density of 800kg/m³ is mixed with 100cm³ of water with a density of 1000kg/m³. The density of the mixture is 960kg/m³. Determine the value of X (3mks)
	Explain in terms of the arrangement of particles the kinetic theory of matter. (3mks).
0.	A hippo of mass 500kg is able to walk on a muddy river bank while a car of mass 220kg is not able. Explain (2mks)
1.	SECTION B: (55MARKS) ANSWER ALL QUESTIONS (a) The table below shows values of pressure P in fresh water at different depth

Pressure P(Kpg)	110	140	180	200	220
Depth h(cm	1.0	4.0	8.0	10.0	12.0

(i) On the gird provided, plot a graph of pressure against depths. (5mks))
(ii) Given that the equation $P=P_0+pgh$, determine from the graph (I) the value of P_0 (iii) The density of fresh water	(1mk) (4mks)
(b) The mass of density bottle is 20.0g when empty. 70g when full of water and 55g when full of a second liquid. Calculate the density of the liquid (take density of water to be 1000kgm ⁻³)	n (4mks)

12.	a)	Explain why it is easier to ride a bicycle round a bend on a road if the surface is dry than when it is wet (2mks)
	b)	Give one difference between limiting and dynamic forces of friction (2mks)
		Mercury on a clean glass slide collects into small spherical balls as shown in figure below. Drops of mercury Clean glass slide
d.)	State I	Pascal's principle of transmission of pressure (2mks)
e.). 17(a) S	(2mks) State Hoo	oke's law (1mark)

12.0 cm
▼2.0 N
With no load, the spring is 12.0 cm long. With a load of 2.0 N on the end of the spring, its length is 15.0 cm. Calculate the extension of the spring. (2 marks)
(c) When the graph of extension against load is drawn for the spring, the result is the line shown below.
extension/cm 2 1 1 1 1 1 1 1 1 1 1 1 1
(ii) Calculate the energy stored in the spring when it stretches through 2cm (2 marks)
(iii) Calculate the spring constant from the graph (3 marks)
FOR MARKING SCHEMES CALL/WHATSAPP 0705525657

(b) A student hangs a spring vertically from a hook, as shown in Figure below.

frict	500 N ional fo		2000 N force propelling car forwards
(i) Ca	lculate t	he magnitude of the resultant force on the car.	(2mks)
(ii) C	alculate	e the acceleration of the car.	(2 marks)
• • • • • •			
		re shows two trolleys of masses 2.0kg and 1.5kg trave trolleys combine on collision	reling towards each other at 0.25m/s and
		2-0 kg.	0·4 ms·1 1·5 kg.
(i) Ca	alculate	the velocity of the combined trolleys.	(4 marks)
(ii) In	what c	lirection do the trolleys move after collision	(1mark)
19.	(a)	What is diffusion?	(1 mark)
	(b)	A smoke cell contains a mixture of trapped air and through a microscope. State and explain what is ol	
	(c)	A beaker is filled completely with water. A spoon dissolves and the water does not overflow. (i) Why is salt added slowly?	full of common salt is added slowly. The salt (2 mark)

(a)The car of mass 500kg is travelling on a level road as shown below.

18

Why doesn't the water overflow?	(2 mark)			
of a long glass tube as shown.	use and react to form a white deposit on t			
	Cotton wool soaked			
i) What conclusion can be made from the result of this experiment? (2mark)				
How does the size and mass of a gas affect its	rate of diffusion? (2 marks)			
The experiment is performed at a lower temper the white deposit would be affected.	rature. Explain how the time taken to for (2 marks)			
	e figure below, ammonia gas and an acid gas diffication of a long glass tube as shown. A Ammonia gas otton wool soaked in conc. ammonia White deposit What conclusion can be made from the result of the conclusion of a gas affect its.			